Issue 3, 2013

Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2nanotubes for specific and sensitive detection chlorpyrifos

Abstract

A molecular imprinted polymer thin film for photoelectrochemical (PEC) sensing of chlorpyrifos molecules was first constructed by electropolymerizing the o-phenylenediamine (o-PD) monomer and chlorpyrifos template molecule on gold nanoparticles-modified titanium dioxide nanotubes. The resulting PEC sensors were characterized by scanning electron microscopy, ultraviolet (UV)-vis spectra and electrochemical impedance spectra. Clearly, the imprinted film showed high selectivity to chlorpyrifos in our case. Under visible light irradiation, poly(o-phenylenediamine) (PoPD) can generate the photoelectric transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), delivering the excited electrons to the AuNPs, and then to the conduction band (CB) of the titanium dioxide nanotubes (TiO2 NTs). Simultaneously, it is believed that a positively charged hole (h+) of PoPD that took part in the oxidation process was consumed to promote the amplification of photocurrent response. Under the optimal experimental conditions, the photocurrents were proportional to the concentrations of chlorpyrifos ranging from 0.05 to 10 μmol L−1 with the detection limit of 0.96 nmol L−1. The PEC sensor had an excellent specificity and could be successfully applied to the detection of reduced chlorpyrifos in green vegetables, indicating a promising application in PEC sensing.

Graphical abstract: Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2012
Accepted
23 Nov 2012
First published
23 Nov 2012

Analyst, 2013,138, 939-945

Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos

P. Wang, W. Dai, L. Ge, M. Yan, S. Ge and J. Yu, Analyst, 2013, 138, 939 DOI: 10.1039/C2AN36266J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements