Anchoring sites to the STM tip can explain multiple peaks in single molecule conductance histograms
Abstract
Accelerated molecular dynamics and quantum conductance calculations are employed to shed light onto the electrochemical properties of the Au|1,8-octanedithiol|Au junction. Widely different contact geometries with varying degrees of roughness are examined. Strikingly, the two extreme situations considered in this work, tip–tip and tip–perfect surface junctions, give almost indistinguishable conductances. This result contrasts the usual notion that different S–Au bonding geometries combined with molecular torsions provide the explanation for the experimentally observed sets (low, medium, high) of conductance peaks. In this work, we provide an alternative explanation for the occurrence of these sets in terms of the specific anchoring sites of the molecule to the tip, which in turn determines the interaction of a portion of the carbon chain with the tip.