Issue 7, 2013

Critical role of small micropores in high CO2 uptake

Abstract

Microporous carbon materials with extremely small pore size are prepared by employing polyaniline as a carbon precursor and KOH as an activating agent. CO2 sorption performance of the materials is systematically investigated at the temperatures of 0, 25 and 75 °C. The prepared carbons show very high CO2 uptake of up to 1.86 and 1.39 mmol g−1 under 1 bar, 75 °C and 0.15 bar, 25 °C, respectively. These values are amongst the highest CO2 capture amounts of the known carbon materials. The relation between CO2 uptake and pore size at different temperatures is studied. An interesting and innovative point that the micropores with pore size smaller than a critical value play a crucial role in CO2 adsorption at different temperatures is demonstrated. It is found that the higher the sorption temperature is, the smaller this critical value of pore size is. Pores smaller than 0.54 nm are manifested to determine CO2 capture capacity at high sorption temperature, e.g. 75 °C. This research proposes a basic principle for designing highly efficient CO2 carbon adsorbents; that is, the adsorbents should be primarily rich in extremely small micropores.

Graphical abstract: Critical role of small micropores in high CO2 uptake

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2012
Accepted
12 Dec 2012
First published
12 Dec 2012

Phys. Chem. Chem. Phys., 2013,15, 2523-2529

Critical role of small micropores in high CO2 uptake

Z. Zhang, J. Zhou, W. Xing, Q. Xue, Z. Yan, S. Zhuo and S. Z. Qiao, Phys. Chem. Chem. Phys., 2013, 15, 2523 DOI: 10.1039/C2CP44436D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements