Issue 16, 2013

Molecular sentinel-on-chip for SERS-based biosensing

Abstract

The development of DNA detection techniques on large-area plasmonics-active platforms is critical for many medical applications such as high-throughput screening, medical diagnosis and systems biology research. Here, we report for the first time a unique “molecular sentinel-on-chip” (MSC) technology for surface-enhanced Raman scattering (SERS)-based DNA detection. This unique approach allows label-free detection of DNA molecules on chips developed on a wafer scale using large area nanofabrication methodologies. To develop plasmonics-active biosensing platforms in a repeatable and reproducible manner, we employed a combination of deep UV lithography, atomic layer deposition, and metal deposition to fabricate triangular-shaped nanowire (TSNW) arrays having controlled sub-10 nm gap nanostructures over an entire 6 inch wafer. The detection of a DNA sequence of the Ki-67 gene, a critical breast cancer biomarker, on the TSNW substrate illustrates the usefulness and potential of the MSC technology as a novel SERS-based DNA detection method.

Graphical abstract: Molecular sentinel-on-chip for SERS-based biosensing

Supplementary files

Article information

Article type
Paper
Submitted
08 Jan 2013
Accepted
19 Feb 2013
First published
20 Feb 2013

Phys. Chem. Chem. Phys., 2013,15, 6008-6015

Molecular sentinel-on-chip for SERS-based biosensing

H. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra and T. Vo-Dinh, Phys. Chem. Chem. Phys., 2013, 15, 6008 DOI: 10.1039/C3CP00076A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements