Direct electron transfer to a metagenome-derived laccase fused to affinity tags near the electroactive copper site†
Abstract
We demonstrate the efficient direct electron transfer (DET) from an electrode to an engineered laccase isolated from a metagenome. The enzyme has a unique homotrimeric architecture with a two-domain-type laccase subunit. The recombinant laccase-modified mesoporous carbon electrode exhibits an effective catalytic current for oxygen reduction, which depends on the affinity tags attached near the electroactive Cu site of the enzyme. We also investigated the effect of the affinity tags on the orientation of the enzyme on functional thiol-modified Au electrodes. The results suggest that a poly-histidine tag (His-tag) functions as an anchor to control the orientation of the enzyme to enhance the current density of the DET-type bioelectrocatalysis.