Issue 3, 2013

Charge generation and energy transfer in hybrid polymer/infrared quantum dot solar cells

Abstract

Conjugated polymers blended with nanocrystal quantum dots are interesting as solution processable active layers for infrared light harvesting in thin film solar cells. We study photocurrent generation processes in hybrid polymer/quantum dot photovoltaics by comparing device performance and photoinduced absorption (PIA) spectra across blends of three different conjugated polymers, poly(2,3-bis(2-(hexyldecyl)-quinoxaline-5,8-diyl-alt-N-(2-hexyldecyl)-dithieno[3,2-b:2′,3′-d]pyrrole) (PDTPQx-HD), poly[(4,4′-bis(3-(2-hexyl-decyl)dithieno[3,2-b:2′,3′-d]pyrrole)-2,6-diyl-alt-(2,5-bis(3-(2-ethyl-hexyl)thiophen-2yl)thiazolo[5,4-d]thiazole)] (PPEHTT), and poly[(4,4′-bis(2-octyl)dithieno[3,2-b:2′3′-d]silole)-2,6-diyl-alt-(2,5-bis(3-octylthiophen-2yl)thiazolo[5,4-d]thiazole)] (PSOTT) with PbS quantum dots. The PIA spectra and device performance provide evidence for long-lived photoinduced charge separation and bulk heterojunction device operation for blends of both PDTPQx-HD and PPEHTT with PbS. In contrast we find that PSOTT/PbS blends can produce viable solar cells without any evidence for long-lived charge transfer in the PIA spectra. Even so, the external quantum efficiency (EQE) spectra of PSOTT/PbS solar cells indicate that the polymer plays a significant role in light harvesting. We use photoluminescence excitation spectroscopy to confirm that the polymer funnels energy to the PbS quantum dots via energy transfer, and speculate that these blends may operate as PbS Schottky diodes sensitized by energy transfer from the semiconducting polymer host.

Graphical abstract: Charge generation and energy transfer in hybrid polymer/infrared quantum dot solar cells

Supplementary files

Article information

Article type
Communication
Submitted
24 Nov 2012
Accepted
02 Jan 2013
First published
04 Jan 2013

Energy Environ. Sci., 2013,6, 769-775

Charge generation and energy transfer in hybrid polymer/infrared quantum dot solar cells

E. Strein, A. Colbert, S. Subramaniyan, H. Nagaoka, C. W. Schlenker, E. Janke, S. A. Jenekhe and D. S. Ginger, Energy Environ. Sci., 2013, 6, 769 DOI: 10.1039/C2EE24175G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements