Volume 161, 2013

Lipid phase behaviour under steady state conditions

Abstract

At the interface between two regions, for example the air–liquid interface of a lipid solution, there can arise non-equilibrium situations. The water chemical potential corresponding to the ambient RH will, in general, not match the water chemical potential of the solution, and the gradients in chemical potential cause diffusional flows. If the bulk water chemical potential is close to a phase transition, there is the possibility of forming an interfacial phase with structures qualitatively different from those found in the bulk. Based on a previous analysis of this phenomenon in two component systems (C. Åberg, E. Sparr, K. J. Edler and H. Wennerström, Langmuir, 2009, 25, 12177), we here analyse the phenomenon for three-component systems. The relevant transport equations are derived, and explicit results are given for some limiting cases. Then the formalism is applied conceptually to four different aqueous lipid systems, which in addition to water and a phospholipid contain (i) octyl glucoside, (ii) urea, (iii) heavy water, and (iv) sodium cholate as the third component. These four cases are chosen to illustrate (i) a method to use a micelle former to transport lipid to the interface where a multi-lamellar structure can form; (ii) to use a co-solvent to inhibit the formation of a gel phase at the interface; (iii) a method to form pure phospholipid multi-lamellar structures at the interface; (iv) a method to form a sequence of phases in the interfacial region. These four cases all have the character of theoretically based conjectures and it remains to investigate experimentally whether or not the conditions can be realized in practice.

Article information

Article type
Paper
Submitted
22 Apr 2012
Accepted
01 Jun 2012
First published
04 Jun 2012

Faraday Discuss., 2013,161, 151-166

Lipid phase behaviour under steady state conditions

C. Åberg, E. Sparr and H. Wennerström, Faraday Discuss., 2013, 161, 151 DOI: 10.1039/C2FD20079A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements