Issue 32, 2013

PNA–NLS conjugates as single-molecular activators of target sites in double-stranded DNA for site-selective scission

Abstract

Artificial DNA cutters have been developed by us in our previous studies by combining two strands of pseudo-complementary peptide nucleic acid (pcPNA) with Ce(IV)–EDTA-promoted hydrolysis. The pcPNAs have two modified nucleobases (2,6-diaminopurine and 2-thiouracil) instead of conventional A and T, and can invade double-stranded DNA to activate the target site for the scission. This system has been applied to site-selective scissions of plasmid, λ-phage, E. coli genomic DNA, and human genomic DNA. Here, we have reported a still simpler and more convenient DNA cutter obtained by conjugating peptide nucleic acid (PNA) with a nuclear localization signal (NLS) peptide. This new DNA cutter requires only one PNA strand (instead of two) bearing conventional (non-pseudo-complementary) nucleobases. This PNA–NLS conjugate effectively activated the target site in double-stranded DNA and induced site-selective scission by Ce(IV)–EDTA. The complex formation between the conjugate and DNA was concretely evidenced by spectroscopic results based on time-resolved fluorescence. The target scission site of this new system was straightforwardly determined by the Watson–Crick base pairing rule, and mismatched sequences were clearly discriminated. Importantly, even highly GC-rich regions, which are difficult to be targeted by a previous strategy using pcPNA, were successfully targeted. All these features of the present DNA cutter make it promising for various future applications.

Graphical abstract: PNA–NLS conjugates as single-molecular activators of target sites in double-stranded DNA for site-selective scission

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2013
Accepted
07 Jun 2013
First published
02 Jul 2013

Org. Biomol. Chem., 2013,11, 5233-5238

PNA–NLS conjugates as single-molecular activators of target sites in double-stranded DNA for site-selective scission

Y. Aiba, Y. Hamano, W. Kameshima, Y. Araki, T. Wada, A. Accetta, S. Sforza, R. Corradini, R. Marchelli and M. Komiyama, Org. Biomol. Chem., 2013, 11, 5233 DOI: 10.1039/C3OB40947C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements