Issue 37, 2013

Nb-doped TiO2nanoparticles for organic dye-sensitized solar cells

Abstract

Nb-doped anatase TiO2 nanoparticles were prepared by the sol–gel process followed by a hydrothermal treatment and successfully used as the photoanodes in organic dye-sensitized solar cells (DSSCs). Phase identification of the TiO2 samples was confirmed by X-ray diffraction and Raman shift spectroscopy. The electronic structure and Nb doping in the TiO2 lattice were confirmed by X-ray photoelectron spectroscopy and energy-disperse X-ray spectroscopy, respectively. Also, the conduction band edge (CB) shift due to the Nb-doping in the TiO2 lattice by UV-vis diffuse reflectance spectroscopy and the effect of Nb doping on the charge transporting and recombination behaviors of the DSSCs by electrochemical impedance spectroscopy (EIS) analysis were investigated. The Nb-doped TiO2 exhibited a positive shift of the conduction band edge (CB) compared to the undoped TiO2. Consequently, the increased driving force for electron injection, that is, the difference between the CB of TiO2 and the lowest unoccupied molecular orbital (LUMO) energy level of the dye, could correspondingly contribute to the enhancement of the electron injection efficiency, but the Voc has the opposite behavior. The Voc drop in the DSSCs based on the Nb-doped TiO2 could be prevented using a multi-functional HC-A as a coadsorbent instead of DCA. As expected, a PCE of 7.41% was obtained for the NKX2677/HC-A-sensitized DSSC based on the 2.5 mol% Nb-doped TiO2, which was an improvement of 11% relative to that of the DSSC based on the undoped TiO2.

Graphical abstract: Nb-doped TiO2 nanoparticles for organic dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
27 Apr 2013
Accepted
28 Jun 2013
First published
06 Aug 2013

RSC Adv., 2013,3, 16380-16386

Nb-doped TiO2 nanoparticles for organic dye-sensitized solar cells

S. G. Kim, M. J. Ju, I. T. Choi, W. S. Choi, H. Choi, J. Baek and H. K. Kim, RSC Adv., 2013, 3, 16380 DOI: 10.1039/C3RA42081G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements