Issue 48, 2013

Spin transport in silicene and germanene

Abstract

In this article, we have investigated spin polarized electronic transport in two dimensional sheet materials of silicon and germanium, such as, monolayer silicene and germanene, using semi-classical Monte-Carlo approach. Monte-Carlo simulations are used to model spin transport along with spin density matrix calculations in the devices. Dephasing of the spin vectors in silicene and germanene are due to primarily D'yakonov–Perel (DP) and Elliott–Yafet (EY) relaxation mechanisms. But, as silicene and germanene has high carrier mobility the latter one is not the dominant relaxation mechanism. In this work, we studied spin polarized transport along the length of the planar monolayer silicene, buckled monolayer silicene and germanene monolayer structure and the spin dephasing length is estimated to be in the range of 0.5 μm for silicene and 1.5 μm for germanene. We also investigated the ensemble averaged spin vector variation along the length of the planar and buckled monolayer silicene and germanene with varying temperature. Finally, we studied the effect of variation of vertical electric field (Ez) on spin dephasing length in silicene buckled monolayer structure. Silicene and germanene show significant potential for future nanoelectronics devices.

Graphical abstract: Spin transport in silicene and germanene

Article information

Article type
Paper
Submitted
09 Jul 2013
Accepted
24 Sep 2013
First published
25 Sep 2013

RSC Adv., 2013,3, 26153-26159

Spin transport in silicene and germanene

B. Bishnoi and B. Ghosh, RSC Adv., 2013, 3, 26153 DOI: 10.1039/C3RA43491E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements