Issue 46, 2013

Thermally reduced graphene: synthesis, characterization and dye removal applications

Abstract

Since its recent discovery, graphene has emerged as a promising material for a variety of applications. In this article, thermally reduced graphene (TRG) was produced by thermal exfoliation of graphite oxide; characterized using XRD, SEM, TEM, FTIR, XPS, BET, and elemental analysis; and used as an adsorbent to remove methyl orange (MO) dye from aqueous solution. Langmuir and Freundlich isotherm models are used to examine the nature of the adsorption process and the results indicate that MO adsorption on TRG can be described as monolayer type (Langmuir) adsorption. Moreover, the adsorption process is physical, spontaneous, and follows a second order kinetics as revealed by the analysis of the thermodynamic and kinetic data. Furthermore, the sorption capacity and the removal percentage strongly depend on the adsorbent-to-dye ratio, the solution pH and temperature. The current study indicates that graphene could be a very efficient adsorbent for removal of MO dye from colored-waters with a maximum sorption capacity of 100 mg of dye per g of TRG and a removal percentage of 98%. In addition, more than 80% of the adsorbed dye can be recovered and TRG can be regenerated and reused with no significant change in its sorption capacity.

Graphical abstract: Thermally reduced graphene: synthesis, characterization and dye removal applications

Article information

Article type
Paper
Submitted
26 Jul 2013
Accepted
07 Oct 2013
First published
08 Oct 2013

RSC Adv., 2013,3, 24455-24464

Thermally reduced graphene: synthesis, characterization and dye removal applications

M. Z. Iqbal and A. A. Abdala, RSC Adv., 2013, 3, 24455 DOI: 10.1039/C3RA43914C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements