Distinct effect of hierarchical structure on performance of anatase as an anode material for lithium-ion batteries†
Abstract
Hierarchically structured titania materials composed of anatase nanoparticles have been prepared via a template-free light-driven fabrication route by employing titanium glycolate (TG) as a precursor. These materials are characterized by electron microscopy, X-ray powder diffraction, and nitrogen adsorption–desorption measurements. The lithium storage properties of the materials are evaluated by galvanostatic charge–discharge, cyclic voltammetry, and electrochemical impedance techniques. At a current density of 0.1 A g−1, the initial lithium insertion/extraction capacities of the hierarchically structured titania reach 262 and 221 mA h g−1, respectively. A discharge capacity of approximately 149 mA h g−1 is retained after being cycled at 1.0 A g−1 for 100 cycles, demonstrating the superior rate performance and high cycleability of the materials. The structural hierarchy featured by the well-defined morphology, high specific surface area, narrow pore size distribution, and high crystallinity has a significant influence on the electrochemical properties of the titania materials. The introduction of a hierarchical structure is envisaged as an efficient approach for the development of novel electrode materials for high performance lithium-ion batteries.