Issue 1, 2013

Photocatalytic generation of hydrogen from water using a cobalt pentapyridine complex in combination with molecular and semiconductor nanowire photosensitizers

Abstract

Recently, a family of cobalt pentapyridine complexes of the type [(R-PY5Me2)Co(H2O)])(CF3SO3)2, (R = CF3, H, or NMe2; PY5Me2 = 2,6-bis(1,1-di(pyridin-2-yl)ethyl)pyridine) were shown to catalyze the electrochemical generation of hydrogen from neutral aqueous solutions using a mercury electrode. We now report that the CF3 derivative of this series, [(CF3PY5Me2)Co(H2O)](CF3SO3)2 (1), can also operate in neutral water as an electrocatalyst for hydrogen generation under soluble, diffusion-limited conditions on a glassy carbon electrode, as well as a photocatalyst for hydrogen production using either molecular or semiconductor nanowire photosensitizers. Owing to its relatively low overpotential compared to other members of the PY5 family, complex 1 exhibits multiple redox features on glassy carbon, including a one-proton, one-electron coupled oxidative wave. Further, rotating disk electrode voltammetry measurements reveal the efficacy of 1 as a competent hydrogen evolution catalyst under soluble, diffusion-limited conditions. In addition, we establish that 1 can also generate hydrogen from neutral water under photocatalytic conditions with visible light irradiation (λirr ≥ 455 nm), using [Ru(bpy)3]2+ as a molecular inorganic chromophore and ascorbic acid as a sacrificial donor. Dynamic light scattering measurements show no evidence for nanoparticle formation for the duration of the photolytic hydrogen evolution experiments. Finally, we demonstrate that 1 is also able to enhance the hydrogen photolysis yield of GaP nanowires in water, showing that this catalyst is compatible with solid-state photosensitizers. Taken together, these data establish that the well-defined cobalt pentapyridine complex [(CF3PY5Me2)Co(H2O)]2+ is a versatile catalyst for hydrogen production from pure aqueous solutions using either solar or electrical input, providing a starting point for integrating molecular systems into sustainable energy generation devices.

Graphical abstract: Photocatalytic generation of hydrogen from water using a cobalt pentapyridine complex in combination with molecular and semiconductor nanowire photosensitizers

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Aug 2012
Accepted
05 Sep 2012
First published
06 Sep 2012

Chem. Sci., 2013,4, 118-124

Photocatalytic generation of hydrogen from water using a cobalt pentapyridine complex in combination with molecular and semiconductor nanowire photosensitizers

Y. Sun, J. Sun, J. R. Long, P. Yang and C. J. Chang, Chem. Sci., 2013, 4, 118 DOI: 10.1039/C2SC21163G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements