Issue 8, 2013

Using surfaces to modulate the morphology and structure of attached cells – a case of cancer cells on chitosan membranes

Abstract

This paper describes the development of physically and/or chemically modified chitosan membranes to probe cellular behaviors and molecular-level structural responses of NIH-3T3 fibroblasts (normal cells) and Ha-ras-transformed cells (abnormal cells) adhered onto these modified membranes. To prepare chitosan membranes with nanometrically scaled physical features, we have demonstrated an inexpensive and easy-to-handle method that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically or chemically modified chitosan membranes were examined via scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement, in order to gain a better understanding of chitosan membrane surface characteristics including surface morphology, stiffness, functional groups, and surface hydrophobicity/hydrophilicity. NIH-3T3 fibroblasts and their Ha-ras-transformed progeny were cultured on these modified chitosan membranes. After 12, 24 and 48 h of culture, these cells were investigated to decipher cellular behaviors. We found that NIH-3T3 fibroblasts and their Ha-ras-transformed progeny exhibited distinct structurally based responses attributable to chitosan membrane surface chemical or physical properties that we demonstrate as possibly applicable, for drug screening applications. Secondarily, but crucially to this study, we developed a chitosan-based micropatterning procedure that allowed us to re-arrange mammalian cells (i.e., HeLa cells in this study, for cancer drug screening) at the desired locations (with a single-cell array format). This procedure was based on cell affinity to different surface topographies of chitosan membranes that we prepared. This cell-based patterning approach has the potential for use in a wide range of applications including use as a promising platform for drug discovery, cytotoxicity studies, functional genomics, and investigations of cellular microenvironment. We believe that this study would provide further understanding of naturally derived biomaterials, lay the foundation for broadening the applications of chitosan, and facilitate the development of new biomedical devices (i.e., artificial stents, implantable artificial tissues, and sustainable implantable biosensors) with unique cell–material interface properties and characteristics, such as in vitro cell culture and diagnostic platforms.

Graphical abstract: Using surfaces to modulate the morphology and structure of attached cells – a case of cancer cells on chitosan membranes

Supplementary files

Article information

Article type
Edge Article
Submitted
24 Feb 2013
Accepted
14 May 2013
First published
22 May 2013

Chem. Sci., 2013,4, 3058-3067

Using surfaces to modulate the morphology and structure of attached cells – a case of cancer cells on chitosan membranes

H. Shuai, C. Yang, H. I. Harn, R. L. York, T. Liao, W. Chen, J. A. Yeh and C. Cheng, Chem. Sci., 2013, 4, 3058 DOI: 10.1039/C3SC50533B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements