Issue 9, 2013

Charge transfer through cross-hyperconjugated versus cross-π-conjugated bridges: an intervalence charge transfer study

Abstract

Recently there has been much interest in electron transfer and transport through cross-conjugated molecules as interesting test cases for the interplay between molecular and electronic structure as well as potential motifs in the design of new compounds for molecular electronics. Herein we expand on this concept and present the synthesis and characterization of a series of four organic mixed-valence dyads to probe the effect of the bridge structure on the electronic coupling. The electronic coupling between two triarylamine units could be mediated either by cross-hyperconjugation through a saturated ER2 bridge (E = C or Si, R = alkyl or silyl group), or via a cross-conjugated π-system. The aim of the study is to compare the electron transfer through the various saturated bridges to that of a cross-π-conjugated bridge. The electronic coupling in these mixed-valence compounds was determined by analysis of intervalence charge transfer bands, and was found to be in the range of 100–400 cm−1. A complementary DFT and TD-DFT study indicated that the electronic coupling in the dyads with saturated ER2 segments is highly conformer dependant. Furthermore, the calculations showed that two types of interactions contribute to the electronic coupling; a through-bond cross-(hyper)conjugation mechanism and a through-space mechanism. Taken together, these findings suggest the possibility for new architectures for molecular electronics applications utilizing cross-hyperconjugation through properly selected saturated segments which have comparable electron transfer characteristics as regular cross-π-conjugated molecules.

Graphical abstract: Charge transfer through cross-hyperconjugated versus cross-π-conjugated bridges: an intervalence charge transfer study

Supplementary files

Article information

Article type
Edge Article
Submitted
28 Mar 2013
Accepted
17 Jun 2013
First published
18 Jun 2013

Chem. Sci., 2013,4, 3522-3532

Charge transfer through cross-hyperconjugated versus cross-π-conjugated bridges: an intervalence charge transfer study

E. Göransson, R. Emanuelsson, K. Jorner, T. F. Markle, L. Hammarström and H. Ottosson, Chem. Sci., 2013, 4, 3522 DOI: 10.1039/C3SC50844G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements