Issue 31, 2013

Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection: the polysaccharide capsule in Klebsiella is a responsive polymer hydrogel that adapts to osmotic stress

Abstract

A global health problem concerns the evolution of antibiotic-resistant bacteria. A characteristic of these super bug pathogens is their ability to form an exopolysaccharide matrix, the capsule, allowing them to resist antibiotic treatment and other environmental stresses. Here we apply atomic force microscopy (AFM) to interrogate living bacterial cells and provide the first in situ measurements of the biophysical behaviour of the capsule in physiologically relevant conditions. We prepared live Klebsiella pneumoniae, a common pathogen that has evolved super bug strains. We measured how capsule, cell wall and cell cytoplasm of wild type and capsule-deficient bacterial cells respond when indented by an AFM tip, under extreme osmotic conditions. By developing a mechanical model for the indentation of bacteria and fitting the force profiles to this model, we discovered that the organisation and hydration of the capsule alter in response to the osmotic environment, but surprisingly there is no change in cytoplasmic turgor pressure. The capsule deficient mutants however, experience extreme change in turgor pressure under altered osmotic conditions. Our results provide new insight on the biophysical behaviour of the bacterial capsule, demonstrating that it is a polymer hydrogel that acts as an ion sponge to dampen the impact of osmotic stress. Nano-mechanical screening for additives to medical plastics that alter the properties of this ion sponge represents a new way to address the problems associated with antibiotic-resistant bacteria.

Graphical abstract: Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection: the polysaccharide capsule in Klebsiella is a responsive polymer hydrogel that adapts to osmotic stress

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2013
Accepted
17 Jun 2013
First published
17 Jun 2013

Soft Matter, 2013,9, 7560-7567

Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection: the polysaccharide capsule in Klebsiella is a responsive polymer hydrogel that adapts to osmotic stress

H. Wang, J. J. Wilksch, T. Lithgow, R. A. Strugnell and M. L. Gee, Soft Matter, 2013, 9, 7560 DOI: 10.1039/C3SM51325D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements