Issue 39, 2013

Hydrodynamic separation of proteins in supported lipid bilayers confined by gold barriers

Abstract

Hydrodynamic drag forces generated by liquid flow above a supported lipid bilayer (SLB) can be used to induce lateral movement of molecules protruding from the SLB. Since the velocity of the individual molecules depends on their size and coupling to the lipid bilayer, these forces can also be used to enrich and separate different types of membrane-bound molecules. To improve and better quantify hydrodynamic-based molecular separation in SLBs, we formed the SLB on the floor of a microfluidic channel which was patterned with gold barriers that confined the lipid bilayer to a 100 μm wide strip in the center of a 300 μm wide microfluidic channel. This forces the SLB into a region of the channel where the spatial variation of the hydrodynamic forces is close to zero while at the same time preventing the SLB from creeping up on the PDMS sides of the channel, thus reducing the loss of material. We here use this approach to investigate the accumulation of (i) fluorescently labeled lipids and (ii) the protein complex cholera toxin B (CTB) and to compare how the accumulation and separation differ when having an infinite reservoir or only a spatially limited band of studied molecules in the SLB. In addition, we show how the method can be used for complete separation of different polyvalently bound fractions of CTB.

Graphical abstract: Hydrodynamic separation of proteins in supported lipid bilayers confined by gold barriers

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2013
Accepted
09 Aug 2013
First published
09 Aug 2013

Soft Matter, 2013,9, 9414-9419

Hydrodynamic separation of proteins in supported lipid bilayers confined by gold barriers

B. Johansson, T. Olsson, P. Jönsson and F. Höök, Soft Matter, 2013, 9, 9414 DOI: 10.1039/C3SM51673C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements