Issue 25, 2013

High performance porous carbon through hard–soft dual templates for supercapacitor electrodes

Abstract

A hard–soft dual templates method has been developed for the first time to prepare porous carbons by the direct carbonization of phenol formaldehyde resins (PFs), Zn(NO3)2·6H2O and polyvinyl butyral (PVB) at 1000 °C under Ar gas, in which PFs serve as the carbon source. More importantly, Zn(NO3)2·6H2O and PVB acting as hard and soft template, respectively, can be readily removed through the evaporation process, resulting in pure carbon without any post-treatment, commonly employed. The PF-Zn-PVB-1:5:1 sample has a total BET surface area of 864 m2 g−1, and a total pore volume of 0.76 cm3 g−1. An electrode based on the porous carbons exhibits the high specific capacitances of 174.7 F g−1 and 152.8 F g−1 at the current densities of 0.5 and 1.0 A g−1, respectively. It also exhibits a superior rate capability, with high specific capacitance retention at ca. 63.1% at a high current density of 20 A g−1. Significantly, about 96.2% is retained after charging and discharging for 10 000 cycles, revealing its long-term electrochemical stability. The hard–soft dual templates method proposed in the present work is straightforward and effective, and can be utilized to synthesize porous carbons on a large scale for the application of high performance supercapacitors.

Graphical abstract: High performance porous carbon through hard–soft dual templates for supercapacitor electrodes

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2013
Accepted
09 Apr 2013
First published
09 Apr 2013

J. Mater. Chem. A, 2013,1, 7379-7383

High performance porous carbon through hard–soft dual templates for supercapacitor electrodes

X. Y. Chen, C. Chen, Z. J. Zhang and D. H. Xie, J. Mater. Chem. A, 2013, 1, 7379 DOI: 10.1039/C3TA10841D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements