Nanoporous fibers of type-I collagen coated poly(l-lactic acid) for enhancing primary hepatocyte growth and function†
Abstract
Advanced scaffold materials are required for liver tissue engineering, to improve primary hepatocyte activity and hepatic function in vitro. The nanotopography of the scaffold material plays an important role in the regulation of cell growth and function. Therefore, in the current study, we developed a novel scaffold composed of type-I collagen coated nanoporous poly(L-lactic acid) (PLLA) fibers (nPFs) to provide a nanotopography with a combination of fibrous and porous features for the culture of primary hepatocytes. The interaction between the nanotopography and the hepatocytes was described by testing cell morphology, retention, activity and hepatic function over a 15 day culture period. Primary hepatocytes cultured on the nPFs formed large-area stable immobilized monolayers after 3 days of culture, and displayed excellent cell bioactivity with higher levels of liver-specific function maintenance, in terms of albumin secretion,