Issue 46, 2013

Carbon nanorods and graphene-like nanosheets by hot filament CVD: growth mechanisms and electron field emission

Abstract

Carbon nanorods and graphene-like nanosheets are catalytically synthesized in a hot filament chemical vapor deposition system with and without plasma enhancement, with gold used as a catalyst. The morphological and structural properties of the carbon nanorods and nanosheets are investigated by field-emission scanning electron microscopy, transmission electron microscopy and micro-Raman spectroscopy. It is found that carbon nanorods are formed when a CH4 + H2 + N2 plasma is present while carbon nanosheets are formed in a methane environment without a plasma. The formation of carbon nanorods and carbon nanosheets are analyzed. The results suggest that the formation of carbon nanorods is primarily a precipitation process while the formation of carbon nanosheets is a complex process involving surface-catalysis, surface diffusion and precipitation influenced by the Gibbs–Thomson effect. The electron field emission properties of the carbon nanorods and graphene-like nanosheets are measured under high-vacuum; it is found that the carbon nanosheets have a lower field emission turn-on than the carbon nanorods. These results are important to improve the understanding of formation mechanisms of carbon nanomaterials and contribute to eventual applications of these structures in nanodevices.

Graphical abstract: Carbon nanorods and graphene-like nanosheets by hot filament CVD: growth mechanisms and electron field emission

Article information

Article type
Paper
Submitted
22 Apr 2013
Accepted
09 Jul 2013
First published
10 Jul 2013

J. Mater. Chem. C, 2013,1, 7703-7708

Carbon nanorods and graphene-like nanosheets by hot filament CVD: growth mechanisms and electron field emission

B. B. Wang, K. Ostrikov, T. van der Laan, K. Zheng, J. J. Wang, Y. P. Yan and X. J. Quan, J. Mater. Chem. C, 2013, 1, 7703 DOI: 10.1039/C3TC30750F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements