Thermodynamic stability of various phases of zinc tinoxides from ab initio calculations†
Abstract
Thermodynamic stabilities of various phases in ZnO–SnO2 systems were investigated based on the Gibbs energy obtained from density functional theory (DFT) calculations. The pressure–temperature (p–T) phase diagram was determined; the coexistence of ZnO and SnO2 was the most stable phase in the low temperature region at zero external pressure, while Zn2SnO4 with the inverse spinel structure and ZnSnO3 with the lithium niobate structure were stable at the high temperature and high pressure region. Various octahedral configurations of the inverse spinel structures of Zn2SnO4 were considered. The calculated results showed feasible agreement with