Issue 47, 2013

Bismuth sulphide–polymer nanocomposites from a highly soluble bismuth xanthate precursor

Abstract

Bismuth sulphide nanocrystal–polymer hybrid layers are of interest for various optoelectronic, thermoelectric or sensing applications. In this work, we present a ligand-free in situ route for the formation of Bi2S3 nanorods directly within a polymer matrix. For this purpose, we introduce a novel bismuth xanthate (bismuth(III) O-3,3-dimethylbutan-2-yl dithiocarbonate), which is highly soluble in non-polar organic solvents. The analysis of the crystal structure revealed that the prepared bismuth xanthate crystallises in the monoclinic space group C2/c and forms dimers. The bismuth xanthate can be converted into nanocrystalline Bi2S3 with an orthorhombic crystal structure via a thermally induced solid state reaction at moderate temperatures below 200 °C. In combination with the high solubility in non-polar solvents this synthetic route for Bi2S3 is of particular interest for the preparation of Bi2S3–polymer nanocomposites as exemplarily investigated on Bi2S3–poly(methyl methacrylate) and Bi2S3–poly(3-hexylthiophene-2,5-diyl) (P3HT) nanocomposite layers. Atomic force and transmission electron microscopy revealed that Bi2S3 nanorods are dispersed in the polymer matrix. Photoluminescence experiments showed a quenching of the P3HT fluorescence with increasing Bi2S3 content in the hybrid layer.

Graphical abstract: Bismuth sulphide–polymer nanocomposites from a highly soluble bismuth xanthate precursor

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2013
Accepted
02 Oct 2013
First published
03 Oct 2013
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2013,1, 7825-7832

Bismuth sulphide–polymer nanocomposites from a highly soluble bismuth xanthate precursor

V. Kaltenhauser, T. Rath, W. Haas, A. Torvisco, S. K. Müller, B. Friedel, B. Kunert, R. Saf, F. Hofer and G. Trimmel, J. Mater. Chem. C, 2013, 1, 7825 DOI: 10.1039/C3TC31684J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements