Tethering of spherical DOTAP liposome gold nanoparticles on cysteamine monolayer for sensitive label free electrochemical detection of DNA and transfection†
Abstract
Construction of spherical liposomes is critical for developing tools for targeted gene and drug delivery applications in biotechnology and medicine, however, it has been demonstrated only in solution phase until now. Spherical liposome tethering on pristine thiol monolayer on gold transducer and its application to label free DNA sensing and transfection has rarely been reported. Here, we report tethering of spherical 1,2-dioleoyltrimethylammoniumpropane liposome–gold nanoparticle (DOTAP–AuNP) on amine terminated monolayer by simple electrostatic interaction on gold transducer for the first time. Cuddling of cationic liposome by AuNP prevents spherical vesicle fusion in both liquid and solid phases, an essential criterion required for gene and drug delivery applications. The spherical nature of DOTAP–AuNPs on a gold surface is confirmed electrochemically using both [Fe(CN)6]3−/4− and [Ru(NH3)6]3+ redox probes. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS) and ultraviolet-visible (UV) spectroscopic techniques confirm the robust nature of spherical liposome–AuNPs on solid and in liquid phases. The surface is applied for label free DNA hybridization and single nucleotide polymorphism detections sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 100 attomole. DNA transfection is made simply by dropping E. coli cells on DOTAP–AuNP–DNA immobilized transducer surface. The difference between the fluorescent image of transfected E. coli and the differential interference contrast image of E. coli cells by confocal laser scanning microscopy (CLSM) confirms the efficiency and simplicity of the transfection method developed in terms of reduced cost and reagents.