Issue 9, 2014

Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides

Abstract

Hydrazide chemistry is a powerful technique in glycopeptides enrichment. However, the low density of the monolayer hydrazine groups on the conventional hydrazine-functionalized magnetic nanoparticles limits the efficiency of glycopeptides enrichment. Herein, a novel magnetic nanoparticle grafted with poly(glycidyl methacrylate) (GMA) brushes was fabricated via reversible addition-fragmentation chain transfer (RAFT) polymerization, and a large amount of hydrazine groups were further introduced to the GMA brushes by ring-opening the epoxy groups with hydrazine hydrate. The resulting magnetic nanoparticles (denoted as Fe3O4@SiO2@GMA–NHNH2) demonstrated the high specificity of capturing glycopeptides from a tryptic digest of the sample comprising a standard non-glycosylated protein bovine serum albumin (BSA) and four standard glycoproteins with a weight ratio of 50 : 1, and the detection limit was as low as 130 fmol. In the analysis of a real complex biological sample, the tryptic digest of hepatocellular carcinoma, 179 glycosites were identified by the Fe3O4@SiO2@GMA–NHNH2 nanoparticles, surpassing that of 68 glycosites by Fe3O4@SiO2-single-NHNH2 (with monolayer hydrazine groups on the surface). It can be expected that the magnetic nanoparticles modified with hydrazine functionalized polymer brushes via RAFT technique will improve the specificity and the binding capacity of glycopeptides from complex samples, and show great potential in the analysis of protein glycosylation in biological samples.

Graphical abstract: Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides

Supplementary files

Article information

Article type
Paper
Submitted
11 Jan 2014
Accepted
25 Jan 2014
First published
27 Jan 2014

Analyst, 2014,139, 2199-2206

Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides

G. Huang, Z. Sun, H. Qin, L. Zhao, Z. Xiong, X. Peng, J. Ou and H. Zou, Analyst, 2014, 139, 2199 DOI: 10.1039/C4AN00076E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements