Issue 13, 2014

Micropatterning neuronal networks

Abstract

Spatially organised neuronal networks have wide reaching applications, including fundamental research, toxicology testing, pharmaceutical screening and the realisation of neuronal implant interfaces. Despite the large number of methods catalogued in the literature there remains the need to identify a method that delivers high pattern compliance, long-term stability and is widely accessible to neuroscientists. In this comparative study, aminated (polylysine/polyornithine and aminosilanes) and cytophobic (poly(ethylene glycol) (PEG) and methylated) material contrasts were evaluated. Backfilling plasma stencilled PEGylated substrates with polylysine does not produce good material contrasts, whereas polylysine patterned on methylated substrates becomes mobilised by agents in the cell culture media which results in rapid pattern decay. Aminosilanes, polylysine substitutes, are prone to hydrolysis and the chemistries prove challenging to master. Instead, the stable coupling between polylysine and PLL-g-PEG can be exploited: Microcontact printing polylysine onto a PLL-g-PEG coated glass substrate provides a simple means to produce microstructured networks of primary neurons that have superior pattern compliance during long term (>1 month) culture.

Graphical abstract: Micropatterning neuronal networks

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2014
Accepted
19 May 2014
First published
19 May 2014

Analyst, 2014,139, 3256-3264

Author version available

Micropatterning neuronal networks

H. Hardelauf, S. Waide, J. Sisnaiske, P. Jacob, V. Hausherr, N. Schöbel, D. Janasek, C. van Thriel and J. West, Analyst, 2014, 139, 3256 DOI: 10.1039/C4AN00608A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements