Issue 22, 2014

Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release

Abstract

In this paper, we describe the development of a planar, pillar array device that can be used to image either side of a tunable membrane, as well as sample and detect small molecules in a cell-free region of the microchip. The pores are created by sealing two parallel PDMS microchannels (a cell channel and a collector channel) over a gold pillar array (5 or 10 μm in height), with the device being characterized and optimized for small molecule cross-over while excluding a flowing cell line (here, red blood cells, RBCs). The device was characterized in terms of the flow rate dependence of analyte cross-over and cell exclusion as well as the ability to perform amperometric detection of catechol and nitric oxide (NO) as they cross-over into the collector channel. Using catechol as the test analyte, the limits of detection (LOD) of the cross-over for the 10 μm and 5 μm pillar array heights were shown to be 50 nM and 105 nM, respectively. Detection of NO was made possible with a glassy carbon detection electrode (housed in the collector channel) modified with Pt-black and Nafion, to enhance sensitivity and selectivity, respectively. Reproducible cross-over of NO as a function of concentration resulted in a linear correlation (r2 = 0.995, 7.6–190 μM), with an LOD for NO of 230 nM on the glassy carbon/Pt-black/0.05% Nafion electrode. The applicability of the device was demonstrated by measuring the NO released from hypoxic RBCs, with the device allowing the released NO to cross-over into a cell free channel where it was detected in close to real-time. This type of device is an attractive alternative to the use of 3-dimensional devices with polycarbonate membranes, as either side of the membrane can be imaged and facile integration of electrochemical detection is possible.

Graphical abstract: Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2014
Accepted
28 Jul 2014
First published
08 Aug 2014

Analyst, 2014,139, 5686-5694

Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release

A. Selimovic, J. L. Erkal, D. M. Spence and R. S. Martin, Analyst, 2014, 139, 5686 DOI: 10.1039/C4AN01062K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements