Issue 18, 2014

Electrochemical determination of selected neurotransmitters at electrodes modified with oppositely charged carbon nanoparticles

Abstract

The electrocatalytic oxidation of neurotransmitters on the electrodes modified with oppositely charged carbon nanoparticles has been investigated. These nanoparticles were deposited at the electrode from the aqueous suspensions via a layer-by-layer method. The electrocatalytic response was evaluated by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. The modified electrode exhibited good electrocatalytic properties towards not only dopamine oxidation, but also for epinephrine and serotonin oxidation. This allows us to separate their voltammetric signals from the signals of interfering substances such as ascorbic acid or uric acid. The obtained calibration curves are in the range 0.4–350 μM, 1–49 μM and 0.8–100 μM with detection limits of 0.4 μM, 1.0 μM and 0.8 μM for dopamine, epinephrine and serotonin, respectively. In addition these carbon nanoparticulate electrodes showed excellent sample to sample reproducibility (the relative standard deviations for n = 7 equal 0.7%) and, maintained 94% of electrochemical signal corresponding to dopamine oxidation after 18 month storage.

Graphical abstract: Electrochemical determination of selected neurotransmitters at electrodes modified with oppositely charged carbon nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2014
Accepted
08 Jul 2014
First published
09 Jul 2014

Anal. Methods, 2014,6, 7532-7539

Author version available

Electrochemical determination of selected neurotransmitters at electrodes modified with oppositely charged carbon nanoparticles

M. Kundys, K. Szot, E. Rozniecka, M. Jönsson-Niedziółka, R. Lawrence, S. D. Bull, F. Marken and M. Opallo, Anal. Methods, 2014, 6, 7532 DOI: 10.1039/C4AY01344A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements