Issue 3, 2014

One-dimensional coordination polymers constructed from di- and trinuclear {3d–4f} tectons. A new useful spacer in crystal engineering: 1,3-bis(4-pyridyl)azulene

Abstract

Four new heterometallic 3d–4f complexes have been obtained using bi- and trinuclear building blocks: 1[Ni(L1)Gd(NO3)3(azbbpy)]·CH3CN (1), [Zn(L1)Eu(NO3)3(azbbpy)]·H2O (2), 1[(CuL2)2Gd(NO3)2(dca)] 3 and 1[(NiL2)2Dy(H2O)4(oxy-bbz)]NO3·3H2O (4), [H2L1 = 1,3-propanediyl-bis(2-iminomethylene-6-methoxyphenol), H2L2 = 2,6-di(acetoacetyl)pyridine, azbbpy = 1,3-bis(4-pyridyl)azulene, dca = dicyanamide anion, and oxy-bbz = the dianion of the 4,4′-oxy-bis(benzoic) acid]. 1 and 2 represent the first complexes containing 1,3-bis(4-pyridyl)azulene as a ligand. 1, 3, and 4 are one-dimensional coordination polymers constructed from heterometallic nodes connected by the exo-dentate ligands. Helical chains are assembled in the case of 4. The analysis of the packing diagram for 1 reveals the occurrence of π–π stacking interactions established between the azulene rings from neighboring chains, which lead to supramolecular layers. The magnetic properties of 3 in the temperature range 1.9–300 K have been investigated. Intra-node ferromagnetic interactions are established between the CuII and GdIII ions (J = +2.7 cm−1, Ĥ = −J(ŜCu·ŜGd + ŜCu·ŜGd).

Graphical abstract: One-dimensional coordination polymers constructed from di- and trinuclear {3d–4f} tectons. A new useful spacer in crystal engineering: 1,3-bis(4-pyridyl)azulene

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2013
Accepted
23 Sep 2013
First published
24 Sep 2013

CrystEngComm, 2014,16, 319-327

One-dimensional coordination polymers constructed from di- and trinuclear {3d–4f} tectons. A new useful spacer in crystal engineering: 1,3-bis(4-pyridyl)azulene

A. E. Ion, S. Nica, A. M. Madalan, C. Maxim, M. Julve, F. Lloret and M. Andruh, CrystEngComm, 2014, 16, 319 DOI: 10.1039/C3CE41592A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements