Issue 19, 2014

Three-color polymorph-dependent luminescence: crystallographic analysis and theoretical study on excited-state intramolecular proton transfer (ESIPT) luminescence of cyano-substituted imidazo[1,2-a]pyridine

Abstract

Three solid-state luminescence colors, yellow, orange, and red, can be achieved by controlling the crystalline polymorphs of 6-cyano-2-(2′-hydroxyphenyl)imidazo[1,2-a]pyridine (2). This study investigates the relationship between the emission properties and the crystal structure of 2. All luminescence is assigned as a singlet excited-state intramolecular proton transfer (ESIPT) emission. X-ray crystallographic analyses of the three crystals show that there are remarkable differences in the molecular packing: herringbone-like, antiparallel dimer stacking and two slip-stacked, parallel stacking modes, with similar coplanar molecular conformation. Density functional theory (DFT) calculations show that the dipole moment of the ground state enol form is much smaller (1.66 D) than that of the parent compound 1 (5.40 D), which may be the reason why parallel stacking is energetically allowed. The luminescence colors are well reproduced from quantum chemical calculations of the intramolecular proton transfer (IPT) species, which are optimized by the two-layer ONIOM cluster models extracted from the corresponding crystal structure. The results indicate that the intermolecular interactions of the π-stacked IPT and enol molecules are a decisive factor in the emission energy of the crystalline polymorphs. Furthermore, the dipole moments of the excited (4.99 D) and ground states (3.70 D) of the IPT species are found to orient in a high-angled manner (ca. 150°). Therefore, the energy levels of the two states shift differently upon environmental variation, resulting in a change in the luminescence energy. Thus, the three-color, polymorph-dependent luminescence of 2 is rationally explained with crystallographic analyses and quantum chemical simulations. The results presented here will contribute to understanding the structure–property relationships of solid-state luminescence at the molecular level and further design of new polymorph-dependent luminescent materials.

Graphical abstract: Three-color polymorph-dependent luminescence: crystallographic analysis and theoretical study on excited-state intramolecular proton transfer (ESIPT) luminescence of cyano-substituted imidazo[1,2-a]pyridine

Supplementary files

Article information

Article type
Paper
Submitted
25 Dec 2013
Accepted
24 Feb 2014
First published
24 Feb 2014

CrystEngComm, 2014,16, 3890-3895

Three-color polymorph-dependent luminescence: crystallographic analysis and theoretical study on excited-state intramolecular proton transfer (ESIPT) luminescence of cyano-substituted imidazo[1,2-a]pyridine

T. Mutai, H. Shono, Y. Shigemitsu and K. Araki, CrystEngComm, 2014, 16, 3890 DOI: 10.1039/C3CE42627K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements