Fluorescence spectroscopy of individual semiconductor nanoparticles in different ethylene glycols
Abstract
The optical properties of single colloidal semiconductor nanoparticles (NPs) are considerably influenced by the direct environment of the NPs. Here, the influence of different liquid and solid glycol matrices on CdSe-based NPs is investigated. Since the fluorescence of individual NPs varies from one NP to another, it is highly desirable to study the very same individual NPs in different matrices. This was accomplished by immobilizing NPs in a liquid cell sample holder or in microfluidic devices. The samples have been investigated by space-resolved wide-field fluorescence microscopy and energy- and time-resolved confocal scanning fluorescence microscopy with respect to fluorescence intensities, emission energies, blinking behavior, and fluorescence decay dynamics of individual NPs. During the measurements the NPs were exposed to air, to liquid ethylene glycols H(OCH2CH2)nOH (also called EGn) with different chain lengths (1 ≤ n ≤ 7), to liquid 2-methylpentane-2,3-diol, or to solid polyethylene oxide. It was found that EG6–7 (also known as PEG 300) is very well suited as a liquid matrix or solvent for experiments that correlate chemical and physical modifications of the surface and of the immediate environment of individual NPs to their fluorescence properties since it leads to intense and stable fluorescence emission of the NPs.
- This article is part of the themed collection: Bunsentagung 2014: ‘Physical Chemistry of Nanoparticles’