Acetalization of aldehydes and ketones over H4[SiW12O40] and H4[SiW12O40]/SiO2†
Abstract
H4[SiW12O40] (H-SiW12) is demonstrated to be able to efficiently catalyze the acetalization of aldehydes and ketones with ethylene glycol and 1,3-propanediol. Nevertheless, the possible leaching and the recycling of H-SiW12 are two major disadvantages that largely restrict its further application in industry. Moreover, H4[SiW12O40] tends to deactivate strong proton sites due to the small surface area of 10 m2 g−1. Due to interactions with surface silanol groups, the proton sites of polyoxometalates (POMs) on SiO2 are less susceptible to deactivation. As such, immobilization of H4[SiW12O40] onto SiO2 leads to the heterogeneous catalyst H4[SiW12O40]/SiO2 (H-SiW12/SiO2), which can catalyze the acetalization of aldehydes and ketones with ethylene glycol and 1,3-propanediol selectively and efficiently without the need of a drying agent. The acetalization process can proceed smoothly at a relatively low temperature under solvent-free conditions. The catalyst of H4[SiW12O40]/SiO2 can be recycled at least ten times without an obvious decrease in its catalytic activity. As far as we know, the TONs of the H-SiW12/SiO2-catalyzed acetalization of cyclohexanone with ethylene glycol, and benzaldehyde with 1,3-propanediol are the highest reported so far.