Issue 12, 2014

Transition metal-rich mesoporous silicas and their enhanced catalytic properties

Abstract

A controllable and simple direct hydrothermal synthesis route was designed for synthesizing well-ordered mesoporous silica incorporating transition metals (M) (Ni, Cu, Zn, Co) with high metal loading. M-incorporated mesoporous silica could be obtained from a starting synthesis mixture with a Si/M mole ratio of 5 using transition metal–ammonia (NH3) complex ions [M(NH3)x]n+ as base. The Si/M mole ratio of 5 is the lowest value yet reported. XPS, UV-vis and H2-TPR analyses demonstrated that a chemical bond was formed between metal and silicon via oxygen and no bulk metal oxides existed in any of the M-MCM-41 samples; in other words, only tetrahedral coordinated metal species were detected. The formation of –O–M–O–Si–O– is completed via the reaction between hydrolyzate [M(OH)(NH3)x−1](n−1)+ from [M(NH3)x]n+ and [triple bond, length as m-dash]Si–OH (silanol sites) from a silica source (tetramethoxysilane (TMOS)). All the M-MCM-41 samples possessed remarkable physical properties and thermal stability. Ni-MCM-41, Cu-MCM-41 and CoMCM-41 catalysts exhibited excellent catalytic efficiency for carbon dioxide (CO2) hydrogenation, although Zn-MCM-41 catalyst did not. Ni-MCM-41 catalyst suited methanation, resulting in high CO2 conversion rate and methane selectivity, while Cu-MCM-41 catalyst favored the reverse water gas shift (RWGS) reaction and realized high CO2 conversion rate to carbon monoxide. A kinetic study was also carried out for methanation and RWGS reaction. Using Ni-MCM-41 catalyst for methanation, the rate equation could be expressed as r = kCCO20.68CH23.31, where C represents concentration. Using Cu-MCM-41 catalyst for RWGS reaction, the rate equation could be expressed as r = kCCO20.5CH21.1, where C represents concentration.

Graphical abstract: Transition metal-rich mesoporous silicas and their enhanced catalytic properties

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2014
Accepted
22 Jul 2014
First published
23 Jul 2014

Catal. Sci. Technol., 2014,4, 4313-4321

Author version available

Transition metal-rich mesoporous silicas and their enhanced catalytic properties

B. Lu and K. Kawamoto, Catal. Sci. Technol., 2014, 4, 4313 DOI: 10.1039/C4CY00688G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements