Issue 12, 2014

The synthesis of pyrroles via acceptorless dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols mediated by a robust and reusable catalyst based on nanometer-sized iridium particles

Abstract

Pyrroles are important compounds with several applications in medicine and material science. They can be synthesized sustainably from secondary alcohols and amino alcohols. Hydrogen and water are liberated in the course of this reaction. Here, we present that this sustainable catalytic pyrrole synthesis can be mediated efficiently by a novel iridium nanoparticle catalyst. The catalyst synthesis starts from molecular precursors, an N-ligand stabilized Ir complex and a commercially available polysilazane. The generation of nanometer-sized iridium particles was achieved (due to the presence of N atoms in the support). The robust nature of the support allows reuse of the catalyst. The scope of the reaction was verified by the synthesis of 23 pyrrole derivatives (up to 93% isolated yield). Thus, an attractive functional group tolerance (e.g. amines and olefins) could be observed. Commercially available heterogeneous Ir catalysts are inefficient in this pyrrole synthesis and extremely limited in terms of reusability.

Graphical abstract: The synthesis of pyrroles via acceptorless dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols mediated by a robust and reusable catalyst based on nanometer-sized iridium particles

Supplementary files

Article information

Article type
Communication
Submitted
06 Aug 2014
Accepted
22 Aug 2014
First published
26 Aug 2014

Catal. Sci. Technol., 2014,4, 4188-4192

The synthesis of pyrroles via acceptorless dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols mediated by a robust and reusable catalyst based on nanometer-sized iridium particles

D. Forberg, J. Obenauf, M. Friedrich, S. Hühne, W. Mader, G. Motz and R. Kempe, Catal. Sci. Technol., 2014, 4, 4188 DOI: 10.1039/C4CY01018C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements