Issue 1, 2014

Exceptional gravimetric and volumetric hydrogen storage for densified zeolite templated carbons with high mechanical stability

Abstract

Zeolite templating successfully generates carbons with high surface area and pore volume of ca. 3300 m2 g−1 and 1.6 cm3 g−1, respectively. The templated carbons have an exceptional gravimetric hydrogen uptake of 7.3 wt% at 20 bar and −196 °C, and a projected maximum of ca. 9.2 wt%. These hydrogen uptake values are the highest ever recorded for carbon materials. The zeolite templated carbons have excellent mechanical stability and when compacted at a load of 10 tons (740 MPa) undergo densification to a packing density of ca. 0.72 g cm−3 but with hardly any loss in porosity (surface area and pore volume are little changed at ca. 3000 m2 g−1 and 1.4 cm3 g−1) or gravimetric hydrogen uptake capacity, which remains high at 7.0 wt% at 20 bar and a projected maximum of ca. 8.8 wt%. The effects of densification (i.e., increased packing density) coupled with hardly any loss in porosity or hydrogen uptake means that the densified zeolite templated carbons achieve an exceptional and unprecedented volumetric hydrogen uptake of 50 g l−1 at −196 °C and 20 bar, and an estimated maximum of up to 63 g l−1 at higher pressure.

Graphical abstract: Exceptional gravimetric and volumetric hydrogen storage for densified zeolite templated carbons with high mechanical stability

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2013
Accepted
28 Oct 2013
First published
29 Oct 2013

Energy Environ. Sci., 2014,7, 427-434

Exceptional gravimetric and volumetric hydrogen storage for densified zeolite templated carbons with high mechanical stability

E. Masika and R. Mokaya, Energy Environ. Sci., 2014, 7, 427 DOI: 10.1039/C3EE42239A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements