Issue 11, 2014

Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells

Abstract

The interface stoichiometry of cuprous oxide (Cu2O) was controlled by adjusting the O2 and Zn partial pressures during ZnO sputter deposition and measured by high-resolution X-ray photoelectron spectroscopy of ultrathin (<3 nm) ZnO films on Cu2O. Open-circuit voltage measurements for ZnO/Cu2O heterojunctions under AM1.5 illumination were measured and it was found that a stoichiometric interface can achieve the voltage entitlement dictated by the band alignment, whereas the non-stoichiometric interface showed large open-circuit voltage deficits. These results highlight not only the need for stoichiometric interfaces in Cu2O devices, but also a reproducible experimental method for achieving stoichiometric interfaces that could be applied to any potential heterojunction partner. Additionally, valence-band offset measurements indicated changing the interface stoichiometry shifted the band alignment between Cu2O and ZnO, which accounts for the variation in previously reported band offset values.

Graphical abstract: Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells

Article information

Article type
Communication
Submitted
25 Jun 2014
Accepted
28 Aug 2014
First published
05 Sep 2014

Energy Environ. Sci., 2014,7, 3606-3610

Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells

S. S. Wilson, J. P. Bosco, Y. Tolstova, D. O. Scanlon, G. W. Watson and H. A. Atwater, Energy Environ. Sci., 2014, 7, 3606 DOI: 10.1039/C4EE01956C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements