Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction†
Abstract
Catalysts for oxygen reduction reaction (ORR) are crucial in fuel cells. Developing metal-free catalyst with high activity at low-cost and high-volume production remains a great challenge. Here, we report a novel type of nitrogen-doped nanoporous carbon nanosheets derived from a conveniently available and accessible plant, Typha orientalis. The nanosheets have high surface area (the highest surface area can be 898 m2 gā1), abundant micropores and high content of nitrogen (highest content of 9.1 at.%). The typical product exhibits an unexpected, surprisingly high ORR activity. In alkaline media, it exhibits similar catalytic activity but superior tolerance to methanol as compared to commercial 20% Pt/C. In acidic media as well, it shows excellent catalytic ability, stability and tolerance to methanol. This low-cost, simple and readily scalable approach provides a straightforward route to synthesize excellent electrocatalysts directly from biomass, which may find broad applications in the fields of supercapacitors, sensors, and gas uptake.