Issue 6, 2014

Advancements in solid acid catalysts for biodiesel production

Abstract

Biodiesel has emerged as one of the best potential renewable energy sources to replace current petroleum-based diesel. It is a sustainable, biodegradable and non-toxic diesel fuel substitute that can be easily produced through base- or acid-catalyzed esterification and transesterification reactions. The conventional base catalysts, although effective, are limited to use of refined vegetable oils, leading to impractical and uneconomical processes due to high feedstock cost and priority as food resources. Biodiesel production processes based on the use of acid catalysts are good alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water-containing oils without soap formation. Highly reactive homogeneous Brønsted acid catalysts are efficient for this process, but they suffer from serious contamination and corrosion problems that require the implementation of good separation and purification steps. More recently, a “green” approach to biodiesel production has stimulated the application of sustainable solid acid catalysts as replacements for such liquid acid catalysts so that the use of harmful substances and generation of toxic wastes are avoided; meanwhile, the ease of catalyst separation after the reactions can be realized. Recent studies have proven the technical feasibility and the environmental and economical benefits of biodiesel production via heterogeneous acid-catalyzed esterification and transesterification. In this perspective, various solid acids including sulfated metal oxides, H-form zeolites, sulfonic ion-exchange resins, sulfonic modified mesostructured silica materials, sulfonated carbon-based catalysts, heteropolyacids and acidic ionic liquids are reviewed as heterogeneous catalysts in esterification and transesterification. Meanwhile, for the purpose of facilitating mass-transport of solid acid-catalyzed biodiesel production processes and improving the catalytic stability of the solid acid catalysts in esterification and transesterification reactions, novel and robust organic–inorganic hybrid acid catalysts with unique advantages including strong Brønsted as well as Lewis acid properties, well-defined mesostructure and enhanced surface hydrophobicity are successfully designed, which have been highlighted in this review.

Graphical abstract: Advancements in solid acid catalysts for biodiesel production

Article information

Article type
Critical Review
Submitted
12 Nov 2013
Accepted
04 Mar 2014
First published
04 Mar 2014

Green Chem., 2014,16, 2934-2957

Author version available

Advancements in solid acid catalysts for biodiesel production

F. Su and Y. Guo, Green Chem., 2014, 16, 2934 DOI: 10.1039/C3GC42333F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements