Issue 5, 2014

Polymer memristor for information storage and neuromorphic applications

Abstract

Polymer materials have been considered as promising candidates for the implementation of memristor devices due to their low-cost, easy solution processability, mechanical flexibility and ductibility, tunable electronic performance through innovative molecular design cum synthesis strategy and compatibility with complementary metal oxide semiconductor (CMOS) technology as well. The digital-type polymer memristor behaves as resistive random access memory with non-volatility, high density, more speed, low power consumption, large ON/OFF ratio, high endurance and long retention, and is recognized as an appealing candidate for the next generation “universal memory”. As a logic component, the analog-type memristor, with the ability to emulate the fundamental synaptic functions of short-term/long-term plasticity (STP/LTP), spike-timing dependent-plasticity (STDP), spike-rate dependent plasticity (SRDP) and “learning-experience” behaviors, can be used to construct artificial neural networks for neuromorphic computation. In this review, we shall attempt to summarize the recent progress in research on the materials, switching characteristics and mechanism aspects of two terminal polymer memristors, for both information storage and neuromorphic applications that inspire great interest in the industrial and academic communities.

Graphical abstract: Polymer memristor for information storage and neuromorphic applications

Article information

Article type
Review Article
Submitted
22 Apr 2014
Accepted
02 Jun 2014
First published
02 Jun 2014

Mater. Horiz., 2014,1, 489-506

Polymer memristor for information storage and neuromorphic applications

Y. Chen, G. Liu, C. Wang, W. Zhang, R. Li and L. Wang, Mater. Horiz., 2014, 1, 489 DOI: 10.1039/C4MH00067F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements