Issue 4, 2014

Virus inhibition induced by polyvalent nanoparticles of different sizes

Abstract

The development of antiviral agents is one of the major challenges in medical science. So far, small monovalent molecular drugs that inhibit the late steps in the viral replication cycle, i.e., virus budding, have not worked well which emphasizes the need for alternative approaches. Polyvalently presented viral receptors, however, show potential as good inhibitors of virus–cell binding, which is the first step in the viral infection cycle. By gradually increasing the size of ligand functionalized gold nanoparticles, up to virus-like dimensions, we are now able to quantify the polyvalent enhancement of virus–cell binding inhibition and to identify varying mechanisms of virus inhibition with different efficacies: by employing a new binding assay we found that surface area-normalized polysulfated gold nanoparticles of diameters equal to and larger than the virus diameter (>50 nm) more efficiently inhibit the binding of vesicular stomatitis virus (VSV) to cells than smaller particles. On a per particle basis, larger sized gold nanoparticles were surprisingly shown to inhibit the viral infection up to two orders of magnitude more efficiently than smaller particles, which suggests different mechanisms of virus inhibition. Based on complementary electron microscopic data, we noticed that larger gold nanoparticles act as efficient cross-linkers between virions, whereas smaller gold nanoparticles decorate the surface of individual virus particles. Our systematic study accentuates the need for the design of biodegradable, virus-sized inhibitors capitalizing on polyvalent binding.

Graphical abstract: Virus inhibition induced by polyvalent nanoparticles of different sizes

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2013
Accepted
12 Dec 2013
First published
19 Dec 2013

Nanoscale, 2014,6, 2353-2360

Virus inhibition induced by polyvalent nanoparticles of different sizes

J. Vonnemann, C. Sieben, C. Wolff, K. Ludwig, C. Böttcher, A. Herrmann and R. Haag, Nanoscale, 2014, 6, 2353 DOI: 10.1039/C3NR04449A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements