Issue 19, 2014

An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications

Abstract

We propose a ground-breaking approach by an upside-down vision of the Au/TiO2 nano-system in order to obtain an enhanced photocatalytic response. The system was synthesized by wrapping Au nanoparticles (∼8 nm mean diameter) with a thin layer of TiO2 (∼4 nm thick). The novel idea of embedding Au nanoparticles with titanium dioxide takes advantage of the presence of metal nanoparticles, in terms of electron trapping, without losing any of the TiO2 exposed surface, so as to favor the photocatalytic performance of titanium dioxide. A complete structural characterization was made by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The remarkable photocatalytic performance together with the stability of the nano-system was demonstrated by degradation of the methylene blue dye in water. The non-toxicity of the nano-system was established by testing the effect of the material on the reproductive cycle of Mytilus galloprovincialis in an aquatic environment. The originally synthesized material was also compared to conventional TiO2 with Au nanoparticles on top. The latter system showed a dispersion of Au nanoparticles in the liquid environment, due to their instability in the aqueous solution that clearly represents an environmental contamination issue. Thus, the results show that nanometric TiO2 wrapping of Au nanoparticles has great potential in eco-friendly water/wastewater purification.

Graphical abstract: An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications

Article information

Article type
Paper
Submitted
23 May 2014
Accepted
13 Jul 2014
First published
24 Jul 2014

Nanoscale, 2014,6, 11189-11195

Author version available

An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications

V. Scuderi, G. Impellizzeri, L. Romano, M. Scuderi, M. V. Brundo, K. Bergum, M. Zimbone, R. Sanz, M. A. Buccheri, F. Simone, G. Nicotra, B. G. Svensson, M. G. Grimaldi and V. Privitera, Nanoscale, 2014, 6, 11189 DOI: 10.1039/C4NR02820A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements