Issue 22, 2014

Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery

Abstract

Based upon the ambitious idea that one single particle could serve multiple purposes at the same time, the combination and simultaneous use of imaging and therapeutics has lately arisen as one of the most promising prospects among nanotechnologies directed toward biomedical applications. Intended for both therapeutics and diagnostics in vivo, highly complex nanostructures were specifically designed to simultaneously act as optical imaging probes and delivery vehicles. Yet, such multifunctional photonic nanoplatforms usually exploit fluorescence phenomena which require constant excitation light through biological tissues and thus significantly reduce the detection sensitivity due to the autofluorescence from living animals. In order to overcome this critical issue, the present article introduces a novel multifunctional agent based on persistent luminescence mesoporous nanoparticles. Being composed of a hybrid chromium-doped zinc gallate core/mesoporous silica shell architecture, we show that this nanotechnology can be used as an efficient doxorubicin-delivery vehicle presenting a higher cytotoxicity toward U87MG cells than its unloaded counterpart in vitro. In addition, we demonstrate that a persistent luminescence signal from these doxorubicin-loaded mesoporous nanophosphors opens a new way to highly sensitive detection in vivo, giving access to the real-time biodistribution of the carrier without any autofluorescence from the animal tissues. This new persistent luminescence-based hybrid nanotechnology can be easily applied to the delivery of any therapeutic agent, thus constituting a versatile and sensitive optical nanotool dedicated to both therapeutic and diagnostic applications in vivo.

Graphical abstract: Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2014
Accepted
11 Sep 2014
First published
15 Oct 2014

Nanoscale, 2014,6, 13970-13976

Author version available

Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery

T. Maldiney, B. Ballet, M. Bessodes, D. Scherman and C. Richard, Nanoscale, 2014, 6, 13970 DOI: 10.1039/C4NR03843F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements