Issue 18, 2014

Camptothecin prodrug block copolymer micelles with high drug loading and target specificity

Abstract

The clinical efficacy of cytotoxic drugs in the treatment of cancer is often hampered by poor pharmacodynamics and systemic toxicity. Here, we describe the design and synthesis of a new PEG-based system for the delivery of the cytotoxic camptothecin (CPT) into tumor cells that overexpress luteinizing hormone releasing hormone receptor (LHRHR). A novel functional reducible camptothecin (CPT) block copolymer conjugate was prepared using atom transfer radical polymerization (ATRP). The use of ATRP in the design and synthesis of the copolymer prodrug facilitated high drug loading and specific delivery to tumor cells. The efficacy of the polymer conjugate was evaluated in appropriate cancer cell lines in vitro. Cytotoxic potency was comparable to that of free CPT in LHRHR positive cell lines after 72 hours, whereas little cytotoxicity was observed in LHRHR negative lines. The study also evaluated the effects of polymer-based therapeutics on human peripheral blood mononuclear cells (PBMC). Free CPT demonstrated indiscriminate toxicity against the immune cells, with impairment of PBMC proliferation and a reduction in CD8+, CD4+ T cell populations. The camptothecin (CPT) block copolymer demonstrated a significant improvement in cell proliferation and maintenance of CD8+ cells.

Graphical abstract: Camptothecin prodrug block copolymer micelles with high drug loading and target specificity

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2014
Accepted
14 May 2014
First published
15 May 2014

Polym. Chem., 2014,5, 5320-5329

Author version available

Camptothecin prodrug block copolymer micelles with high drug loading and target specificity

A. R. Khan, J. P. Magnusson, S. Watson, A. M. Grabowska, R. W. Wilkinson, C. Alexander and D. Pritchard, Polym. Chem., 2014, 5, 5320 DOI: 10.1039/C4PY00369A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements