Issue 2, 2014

Multicomponent nanoarchitectures for the design of optical sensing and diagnostic tools

Abstract

Simultaneous integration of multifunctional properties from different components into a hybrid nanostructure with hierarchical organization is attractive to construct new materials sought for diverse useful applications. This review highlights recent advances in the fabrication of multicomponent organic-conjugated inorganic nanoarchitectures and their potential uses in optical sensing and diagnostic tools. The similarity of the particle sizes, between inorganic hybrids and biomolecules, is the reason they can integrate into new bioconjugated nanocomposites. These multifunctional properties enable such materials to function as dual diagnostic and therapeutic agents in imaging-guided therapy. Deoxyribonucleic acid (DNA)-templated replica approaches for fabricating DNA-functionalized plasmonic nanoarchitectures are discussed to show how incorporation of metal clusters onto helical DNA structures occurs. The resulting helix plasmonic assemblies response enhanced plasmonic properties and circular dichroism signals to external environments, means they can function as highly selective bioprobes. Nanocrystal superlattices are prepared by assembling the uniform colloids by guiding the external magnetic field and solvent evaporation. The highly organized superlattices with long-range ordering exhibit optical properties tuned by external stimuli and, consequently they can be useful for desirable optical sensors and photoswitchable patterns. The efforts discussed in this review are expected to present the structural diversity of promising multifunctional nanoarchitectures for the design of efficient optical sensing and diagnostic tools.

Graphical abstract: Multicomponent nanoarchitectures for the design of optical sensing and diagnostic tools

Additions and corrections

Article information

Article type
Review Article
Submitted
01 Aug 2013
Accepted
08 Oct 2013
First published
08 Oct 2013

RSC Adv., 2014,4, 916-942

Multicomponent nanoarchitectures for the design of optical sensing and diagnostic tools

T. Nguyen and T. Tran, RSC Adv., 2014, 4, 916 DOI: 10.1039/C3RA44056G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements