An in vitro analysis of H1N1 viral inhibition using polymer coated superparamagnetic Fe3O4 nanoparticles
Abstract
Monodispersed Fe3O4 nanoparticles were prepared by a polyol assisted solvothermal method and their activity against H1N1 influenza A virus was studied. The present study also elucidates the influence of size, shape and surface properties of the pristine, as well as polymer coated, magnetite nanoparticles. X-ray diffraction and Fourier transform infrared spectroscopic observations confirm the high crystallinity and the polymer attachment with the magnetite nanoparticles. Transmission electron microscopy (TEM) images confirm the monodispersed nanoprisms and flower like morphologies of the magnetite nanoparticles. The superparamagnetic behavior and other magnetic properties were also studied by measuring the hysteresis loop using a vibrating sample magnetometer. The cell viability studies of the magnetite nanoparticles using a standard MTT assay confirm the non-toxic nature of the samples. Reverse transcription polymerase chain reaction (RT-PCR) analysis confirms the Fe3O4 nanoparticles inhibit influenza viral RNA synthesis in MDCK cells.