Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads
Abstract
By performing first-principle quantum transport calculations, we proposed a multiple-effect organic molecular device for spintronics. The device is constructed of a perylene tetracarboxylic diimide molecule sandwiched between graphene electrodes. Our calculations show that the device has several perfect spintronics effects such as a spin-filter effect, a magnetoresistance effect, a negative differential resistance effect and a spin switching effect. These results indicate that our one-dimensional molecular device is a promising candidate for the future application of graphene-based organic spintronics devices.