Issue 25, 2014

Super-tough poly(l-lactide)/crosslinked polyurethane blends with tunable impact toughness

Abstract

Super-tough poly(L-lactide)/crosslinked polyurethane (PLLA/CPU) blends with a CPU phase dispersed in the PLLA matrix were prepared by reactive blending of PLLA with poly(ethylene glycol) (PEG), glycerol, and 4,4′-methylenediphenyl diisocyanate (MDI). The gel fraction increased while the swelling ratio decreased with increasing glycerol content. FT-IR analysis suggests that interfacial compatibilization between PLLA and CPU occurred via reaction between the hydroxyl group of PLLA and the isocyanate group of MDI. The elongation at break and notched impact strength of PLLA/CPU blends were increased by up to 38 and 21 times those of neat PLLA. The morphology of PLLA/CPU blends plays an important role in notched impact strength and can be controlled by adjusting the content of glycerol. The size of the dispersed CPU phase increased gradually while the notched impact strength increased first and then decreased with increasing glycerol content. Therefore, the notched impact strength can be easily tailored by the content of glycerol of CPU. The optimum size for high impact strength was found to be ∼0.7 μm, which was obtained for the blends with glycerol content in the range of 5 to 10 wt% on the basis of PEG weight. In addition, the effect of glycerol content on the compatibility and rheological properties of PLLA/CPU blends was also investigated.

Graphical abstract: Super-tough poly(l-lactide)/crosslinked polyurethane blends with tunable impact toughness

Article information

Article type
Paper
Submitted
24 Jan 2014
Accepted
24 Feb 2014
First published
24 Feb 2014

RSC Adv., 2014,4, 12857-12866

Author version available

Super-tough poly(L-lactide)/crosslinked polyurethane blends with tunable impact toughness

Y. He, J. Zeng, G. Liu, Q. Li and Y. Wang, RSC Adv., 2014, 4, 12857 DOI: 10.1039/C4RA00718B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements