Highly efficient synthesis of azos catalyzed by the common metal copper (0) through oxidative coupling reactions†
Abstract
A facile and efficient approach to synthesize symmetric, asymmetric and bridged aromatic azo compounds (AAzos) from aromatic amines was developed by using red copper as catalyst. Despite numerous efforts towards the catalytic synthesis of symmetric and asymmetric AAzos derivatives, most reactions present certain drawbacks inhibiting their industrial applications, such as laborious multi-step processes, harsh reaction conditions and expensive reagents. And the synthesis of bridged azos had low yields before. With the presence of ammonium bromide as co-catalyst, pyridine as a ligand and molecular dioxygen as a sole oxidative reagent, red copper, a common and abundant metal in nature, exhibited unexpected catalytic activity towards the preparation of AAzos in high yields via one-step reaction, making this catalyst an attractive candidate for industrial and synthetic applications.