Efficient mixed metal oxide routed synthesis of boron nitride nanotubes
Abstract
Boron nitride nanotubes (BNNTs) were successfully synthesized by a simple annealing process. Amorphous boron powder (B) was used as boron source to react with various metal oxide mixtures (V2O5/Fe2O3 and V2O5/Ni2O3). V2O5 acts as an efficient promoter in the synthetic process due to its highly oxidizing and reducing properties. The Fe2O3 and Ni2O3 act as catalysts in combination with the B/V2O5 system to achieve highly crystalline BNNTs at 1100 °C. The morphology and crystalline nature of the BNNTs were characterised by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The observations revealed the hexagonal-BN (h-BN) phase of the BNNTs, with a highly crystalline tubular structure. This method proved to be simple and economical, using B/V2O5/Fe2O3 and B/V2O5/Ni2O3 mixtures for the large scale production of BNNTs.