Issue 56, 2014

Control of active semiconducting layer packing in organic thin film transistors through synthetic tailoring of dielectric materials

Abstract

Apart from the development of new dielectric and semiconductor materials, the semiconductor–dielectric interface study is also very important for the optimum performance of organic thin film transistors (OTFTs). Herein, we have reported the detailed synthesis of a whole new family of dielectric materials which are 1,3,5,7-tetrabromoadamantane; 1,3,5,7-tetrachloroadamanatane; 1,3,5,7-tetraiodoadamantane and 1,3,5,7-tetrauraciladamantane (AdUr4). The unique ability of these molecules to undergo supramolecular thin film formation at low temperature, was analysed for their potential use as an insulator in organic electronic devices. Owing to the good leakage current density property shown by AdUr4 dielectric material it was further employed as a gate dielectric in regioregular poly(3-hexylthiophene), (P3HT) based OTFT. This OTFT device which was fabricated on a flexible PI plastic substrate has shown a good on/off current ratio (e.g., 2.18 × 104) and high mobility (e.g., 0.15 cm2 V−1 s−1). The semiconductor–dielectric interface study, has revealed that the AdUr4 gate dielectric layer has guided the P3HT molecular chain domains to undergo edge-on orientation, which is the charge transport direction in OTFTs. In this process, the grazing incidence X-ray diffraction (GI-XRD) analysis and AFM study was also employed.

Graphical abstract: Control of active semiconducting layer packing in organic thin film transistors through synthetic tailoring of dielectric materials

Supplementary files

Article information

Article type
Paper
Submitted
10 Mar 2014
Accepted
19 Jun 2014
First published
20 Jun 2014

RSC Adv., 2014,4, 29383-29392

Author version available

Control of active semiconducting layer packing in organic thin film transistors through synthetic tailoring of dielectric materials

R. Singh, J. S. Meena, Y. Chang, C. Wu and F. Ko, RSC Adv., 2014, 4, 29383 DOI: 10.1039/C4RA02077D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements