Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries
Abstract
A copper benzene dicarboxylate metal organic framework (Cu-BDC MOF) was synthesized and successfully incorporated in a poly(ethylene oxide) (PEO) and lithium bis(trifluoromethanesulfonylimide) (LiTFSI) complex. The incorporation of Cu-BDC MOF was found to significantly enhance the ionic conductivity, compatibility and thermal stability of the composite polymer electrolyte (CPE). An all-solid-state-lithium cell composed of Li/CPE/LiFePO4 was assembled, and its cycling profile has been analysed for different C-rates at 70 °C. The appreciable ionic conductivity, thermal stability and cycling ability qualify these membranes as electrolytes for all-solid-state-lithium batteries used in elevated temperature applications.